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1. Research Background
Study of Kerwin-Huelsman-Newcomb Topology

 Two most famous multiple output active filter circuits

» Kerwin—Huelsman—Newcomb (KHN) bi-quadratic circuit
» Tow-Thomas bi-quadratic circuit

* Both circuits are:

> Included almost in all textbooks in active filters, and

» Introduced in most universities to the undergraduate or

graduate students.
Kerwin-Huelsman-Newcomb topology ~ Performance requirements
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1. Research Background
Motivation on Ringing Test

High quality of the performance requirements for high-
order electronic systems

Operating regions of high-order multi-feedback
systems are not introduced. (Kerwin-Huelsman-
Newcomb filters)

General ringing test for high-order electronic systems is
not introduced.

Limitations of loop gain, and conventional stability test
using Nyquit plot are not pointed out.

Nichols chart (magnitude-phase chart) is not widely
applied for the stability test.



1. Research Background
Objectives of This Study

ﬂwestigation of some limitations of the \
conventional stability test methods (loop gain and

Nyquist chart).

 Study of behaviors of various different high-order
systems: 2"9-order, 4t"-order systems, and multi-
feedback systems

- Ringing test for high-order multi-feedback low-
pass filters.

- Observation of phase margin at unity gain on

Nichols chart is used to determine operating
\regions of high-order systems /




1. Research Background
Contributions of This Work

» Investigation of behaviours of high-order
systems such as 2"d-order, 4t"-order systems.

» Stability test for high-order systems using
Nichols chart of self-loop function.

» Proposed ringing test for both the single-ended
and the fully differential Kerwin-Huelsman-
Newcomb low-pass filters.

» Proposal of stability test are verified by both
laboratory simulations and practical
experiments.
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2. Demerits of Conventional Stability Test Methods
Review of Adaptive Feedback System

Block diagram of a typical adaptive feedback system

Re-ference System Output
slgha error Control S Actuating Higna
system system

Feedback
signal Feedback

system

Adaptive feedback is used to control the output voltage along with
the reference voltage.

Transfer function

A 1

- 1+ 4B ~ E —> Loop gain is an approximation value.

AP : loop gain




2. Demerits of Conventional Stability Test Methods
Characteristics of Adaptive Feedback System

Block diagram of a DC-DC Buck converter

DC input
DC voltage ML
Comparator Error voltage ¢ PWM signal
Reference
voltage Pulse Width Modulation

————»{LPF [—¢—>

DC voltage (Switching controller)
DC output
DC voltage DC voltage
+Ri
Feedback voltage DC output sensing | Ripple voltage
(Feedback system)

Adaptive feedback in a DC-DC Buck converter is used to control
the output voltage along with the reference voltage.

- Loop gain is independent of frequency variable (referent
voltage, feedback voltage, and error voltage are DC voltages).
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2. Demerits of Conventional Stability Test Methods
Conventional Concepts of Loop Gain

» Loop gain cannot be used to do the  Ringing in electronic systems

ringing test for negative feedback s =TI e NI SR
systems. = ors Stablllty
3 050 test

Transfer function £ 02
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Gain reduction in an inverting amplifier
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2. Demerits of Conventional Stability Test Methods
Conventional Concepts of Nichols Chart of Loop Gain

Adaptive feedback system Transfer function

Input Output G

—( | G . H=——~1

I J 1+ GF
F GF : loop gain
Nichols plot of loop gain Nichols chart in Network Analyzer?
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3. Behaviors of High-order Systems
Self-loop Function in A Transfer Function

Motion model of a linear system A(®) : Numerator function
by(jw)' +..+b _(jo)+b  H(®) :Transfer function

a,(jo)' +..+a, (jo)+a, L(w) :Self-loop function
Simplified transfer function Variable: angular frequency (w)
O A(®
in ((D) 1 T L((D) Vin(w) Vout
. . m out(w)
Relationship between output and input = g_&/ # A(®) p———p—n

V()= A(m){V @-22p (o )}

A(w)
L(o)
o Polar chart = Nyquist chart — 10|

H(w) =

Graph signal of negative feedback system

o Magnitude-frequency plo
o Angular-frequency plot

o Magnitude-angular diagram = Nichols diagram 12

t
} Bode plots  Negative feedback system



3. Behaviors of High-order Systems
Characteristics of 2"9-order Self-loop Function

Second-order self-loop function: L(m) = joo[aoj(ﬂ + al]

Case Over-damping Critical damping | Under-damping
2 2
Delta (4) | A=a’—4a, >0 A=a—4a, =0 A=a’—4a, <0
|L(w)| co\/(aoo))2 +a) o)\/(azooo)2 +a/ oo\/(aooo)z +a
I an® T an®
9(0)) 5 + arctan 2—1 g + arctan % > + arctan %1
\f==f N
601=2‘20 V5-2 |L(031)| >1 |r—6(0)>76.3 IL(@)|=1 |n-6(w,) =763 |L(w)| <1 n-0(w,) < 76.3°
, =2% L(@,)|>V5  |n-0(w,) > 63.4° |L(o,) =5 | n-6(w,)=634° IL(@,)] <5 | n-6(0,) < 63.4°
0% =% IL(0,)| > 42 |p— 0(w,) >45° | |L(w;)]= 42 | m-0(w,)=45 | |L(w,)|<42 |7 0(@;) <45
0
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3. Behaviors of High-order Systems
Operating Regions of 2"4-Order System

eUnder-damping: /7 () = 1 . Transient response
1 . 2 . 2 a5 Under-damping/,___---_giilicaIdampmg — QOver-damping
L(o)=(jo) + jo; (Jo) +jo+1 vo] ; Overshoot
. . ) 1 S 25 -
eCritical damplng. H2 ((,)) = . > S | ; § 20
w) +2jo+ E 18
Lz(oa):(joa)2+2jco; (] ) J DTS
0.5
eOver-damping: H., (o) = 1 : 0.0
3 ('(0)2+3'c0+1’ 05
L3 ((D) _ (j(D)2 + 3],0); ] ] 0 5 10Time © 15 20 25
undar-damping critical damiping Busr-dainiplie 5 — Over-damping Critical damping — Under-damping
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0dB 0dB 40 Phase
_-5ds | -6dB o 30 Phase margin
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E o8 1;3; 10 92°
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2 2548 =
-30dB | -10 Phase
-35d8 | -20 margin 42°
-40dB 307 ; : : - oy
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Frequency (Hz)
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3. Behaviors of High-order Systems
Operating Regions of 4t"-Order System

Pascal’s Triangle
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 & 1
n=5|1 5 10 10 5 1

eUnder-damping: 1:2:3:2:1

Hy(0) =
(jo) +2(jo) +3(jo) +2jo+]

eCritical damping: 1:4:6:4:1

1
H (o) =
(@) (joo)4+4(joo)3+6(joo)2+4joo+1
eOver-damping: 1:9:10:9:1

1
H,(®)=
(@) (jco)4+9(ja))3+10(ja))2+9ja)+1

Magnitude (dB)

Magnitude (dB)
a2 WON-=2 O = NWR~EOO

Bode plot of transfer function
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4. Ringing Test for High-Order Low-Pass Filters
Analysis of Kerwin-Huelsman-Newcomb LPF

Single-ended Kerwin-Huelsman-Newcomb LPF Transfer function & self-loop function

R3 ,\Q’ b()
C1 H((,O) = — — . ;
._/\/”\,_. —C|)|2—" aO (](D) +611](D+1
I\ Hp R R5 L oan_d 0 .
R1 R2 R6 R7 L (Q)) = aO (]O)) + alj(o;
vout) R
= °P ’ where, b, =—2;
LP 0 R
- 1
Fully differential Kerwin-Huelsman-Newcomb LPF R R R.R
_ 13 e i e W Al
~ a,=—>R.R.CC,:a, = C,;
A e 4 4542

R1=R3=R4=R6=1kQ, R5=5kqQ,
R7=R8 =10 kQ, C1 =C2 =1nF.
*Over-damping (R2=1 kQ),
Critical damping (R2 = 1.2 kQ), and
*Under-damping (R2 = 2.2 kQ).
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4. Ringing Test for High-Order Low-Pass Filters
Simulation Results of 2"-Order KHN LPF
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Magnitude (dB)
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Bode plot of transfer function
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Nichols plot of self-loop function
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- Over-damping ._ Critical damping . Under-damping

Transient response

Phase margi

63 degrees
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2 05 ]
3 00
3 05
£ 0]
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Summarized behaviors
Magnitude Phase margin
(Transfer function) | (Self-loop function)
Casel 3dB 80°
Over-damping (Observed at 100°)
Case 2 5 dB 75°
Critical damping (Observed at 105°)
o
Case 3 _ 10 dB 63
Under-damping (Observed at 117°)
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4. Ringing Test for High-Order Low-Pass Filters

Implemented Circuit of Kerwin-Huelsman-Newcomb LPF

Schematic of Kerwin-Huelsman-Newcomb LPF

Measurement set up
w
R3 R8

@_‘VR1V— - HP r4

System Under Test

Signal generator Buffer Diirviun Unier st Buffer Oscilloscope
In Out
@cm In @O”t Input Output @ CH1®
I A T £

Analog Discovery Il Hantek 6074BC

Digilent (1 kHz ~ 10 kHz) L

Network Analyzer
CH1 CH2
Analog Discovery Il
T Digilent (1 kHz ~ 10 kHz)
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4. Ringing Test for High-Order Low-Pass Filters

Measurement Results of Kerwin-Huelsman-Newcomb LPF
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Bode plot of transfer function

Nichols plot of self-loop function
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5. Comparison to existing methods

Middlebrook’s Comparison
Features Replica method
method measurement
Complex function Loop gain Loop gain Self-loop function
Passive and active
No No Yes
systems
Phase margin
No No Yes
accuracy
Operating region
No No Yes
accuracy
Disturbing
Yes Yes No

feedback loop
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5. Conclusions

This work:

* Investigation of limitations of loop gain and
conventional stability test methods.

* Ringing test for high-order multi-feedback systems
(Kerwin-Huelsman-Newcomb low-pass filters).

= Observation of phase margin on the Nichols chart can
help designers predict the overshoot phenomenon.

- Theoretical concepts of stability test are verified by
SPICE simulations and practical experiments.

Future work:
* Stability test for transmission lines and other systems.
23
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