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• Two most famous multiple output active filter circuits
 Kerwin–Huelsman–Newcomb (KHN) bi-quadratic circuit
 Tow–Thomas bi-quadratic circuit
• Both circuits are: 
 Included almost in all textbooks in active filters, and 
 Introduced in most universities to the undergraduate or

graduate students.
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1. Research Background
Study of Kerwin-Huelsman-Newcomb Topology

Kerwin-Huelsman-Newcomb topology Performance requirements
Operating regions 
Overshoot phenomenon
Stability test
Phase margin 

Not 
studied

HP

BP
LP
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1. Research Background
Motivation on Ringing Test

• High quality of the performance requirements for high-
order electronic systems 

• Operating regions of high-order multi-feedback 
systems are not introduced. (Kerwin-Huelsman-
Newcomb filters)

• General ringing test for high-order electronic systems is 
not introduced.

• Limitations of loop gain, and conventional stability test 
using Nyquit plot are not pointed out.

• Nichols chart (magnitude-phase chart) is not widely 
applied for the stability test.
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1. Research Background
Objectives of This Study

• Investigation of some limitations of  the 
conventional stability test methods (loop gain and 
Nyquist chart).  

• Study of behaviors of various different high-order 
systems: 2nd-order, 4th-order systems, and multi-
feedback systems
 Ringing test for high-order multi-feedback low-

pass filters.
 Observation of phase margin at unity gain on  

Nichols chart is used to determine operating 
regions of high-order systems



 Investigation of behaviours of high-order 
systems such as 2nd-order, 4th-order systems.

 Stability test for high-order systems using 
Nichols chart of self-loop function.

 Proposed ringing test for both the single-ended 
and the fully differential Kerwin-Huelsman-
Newcomb low-pass filters.

 Proposal of stability test are verified by both 
laboratory simulations and practical 
experiments.
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1. Research Background
Contributions of This Work
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2. Demerits of Conventional Stability Test Methods
Review of Adaptive Feedback System

Block diagram of a typical adaptive feedback system

Adaptive feedback is used to control the output voltage along with 
the reference voltage. 

Aβ : loop gain
1

1
 

  
A

A
H

Transfer function

 Loop gain is an approximation value.
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2. Demerits of Conventional Stability Test Methods
Characteristics of Adaptive Feedback System

Block diagram of a DC-DC Buck converter

Reference 
voltage

Adaptive feedback in a DC-DC Buck converter is used to control 
the output voltage along with the reference voltage. 

Loop gain is independent of frequency variable (referent 
voltage, feedback voltage, and error voltage are DC voltages).

DC voltage
DC voltage

DC voltage

DC voltage
+ Ripple voltage
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2. Demerits of Conventional Stability Test Methods
Conventional Concepts of Loop Gain

Nyquist plot of loop gain

Re

Im

0

-1

(Unclear operating region)

Overshoot

Undershoot

Ringing in electronic systems

LAB 
tool

Stability 
test

 Loop gain cannot be used to do the 
ringing test for negative feedback 
systems.

BW =100 Hz GBW =10 MHz

Loop Gain

Aβ : loop gain
1

1
 

  
A

A
H

Gain reduction in an inverting amplifier

Transfer function
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2. Demerits of Conventional Stability Test Methods
Conventional Concepts of Nichols Chart of Loop Gain

GF : loop gain

Transfer function

1
1

 
GF
G

HG

F

+-

OutputInput

Nichols plot of loop gain

(Technology limitations)

Nichols chart in Network Analyzer?

Unused 
tool

Adaptive feedback system
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3. Behaviors of High-order Systems
Self-loop Function in A Transfer Function
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Motion model of a linear system

o Magnitude-frequency plot
o Angular-frequency plot 

o Polar chart  Nyquist chart

o Magnitude-angular diagram  Nichols diagram

Bode plots

Variable:  angular frequency (ω)
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3. Behaviors of High-order Systems
Characteristics of 2nd-order Self-loop Function
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3. Behaviors of High-order Systems
Operating Regions of 2nd-Order System
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3. Behaviors of High-order Systems
Operating Regions of 4th-Order System

Pascal’s Triangle

•Critical damping:

•Under-damping:

•Over-damping:
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4. Ringing Test for High-Order Low-Pass Filters
Analysis of Kerwin-Huelsman-Newcomb LPF
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Single-ended Kerwin-Huelsman-Newcomb LPF Transfer function & self-loop function

where, 

R1 = R3 = R4 = R6 = 1 kΩ, R5 = 5 kΩ, 
R7 = R8 = 10 kΩ, C1 = C2 = 1nF.
•Over-damping (R2 = 1 kΩ), 
•Critical damping (R2 = 1.2 kΩ), and
•Under-damping (R2 = 2.2 kΩ).

Fully differential Kerwin-Huelsman-Newcomb LPF
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4. Ringing Test for High-Order Low-Pass Filters
Simulation Results of 2nd-Order KHN LPF

Bode plot of transfer function Transient response

80o

100o 117o

Nichols plot of self-loop function

Phase margin
63 degrees

10dB

3dB
5dB

Magnitude 
(Transfer function)

Phase margin 
(Self-loop function)

Case 1
Over-damping 3 dB 80o

(Observed at 100o)
Case 2

Critical damping 5 dB 75o

(Observed at 105o)
Case 3

Under-damping 10 dB 63o

(Observed at 117o)

Summarized behaviors

105o
75o

Overshoot
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4. Ringing Test for High-Order Low-Pass Filters
Implemented Circuit of Kerwin-Huelsman-Newcomb LPF

Schematic of Kerwin-Huelsman-Newcomb LPF

System Under Test

Measurement set up

HP

BP
LP
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4. Ringing Test for High-Order Low-Pass Filters
Measurement Results of Kerwin-Huelsman-Newcomb LPF

Transient response

Bode plot of transfer function Nichols plot of self-loop function

83o

97o 103o

17 dB

0 dB

7 dB
Phase margin

50 degrees

Magnitude 
(Transfer function)

Phase margin 
(Self-loop function)

Case 1
Over-damping 0 dB 83o

(Observed at 97o)
Case 2

Critical damping 7 dB 77o

(Observed at 103o)
Case 3

Under-damping 17 dB 50o

(Observed at 130o)

Summarized behaviors

77o

130o

Overshoot
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5. Comparison to existing methods

Features Replica method
Middlebrook’s

method

Comparison 

measurement

Complex function Loop gain Loop gain Self-loop function

Passive and active 

systems
No No Yes

Phase margin 

accuracy
No No Yes

Operating region 

accuracy
No No Yes

Disturbing 

feedback loop
Yes Yes No
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5. Conclusions

This work:
• Investigation of limitations of loop gain and
conventional stability test methods.
• Ringing test for high-order multi-feedback systems
(Kerwin-Huelsman-Newcomb low-pass filters).
 Observation of phase margin on the Nichols chart can
help designers predict the overshoot phenomenon.
 Theoretical concepts of stability test are verified by 
SPICE simulations and practical experiments.
Future work:
• Stability test for transmission lines and other systems.
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